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Abstract

In this work. we describe a preliminary investigation of buoyancy-driven heat transfer during the growth of thin films

from solution following exposure to ultraviolet (UV) light. Irradiation of the growth cell occurs at various directions

relative to gravitational acceleration. Through numerical computations, the steady-state flow and temperature profiles

are simulated during the course of light exposure. Light-induced polymerization accompanies a heat transfer process

through a fairly complicated recirculating flow pattern, A scaling analysis shows thai buoyancy-driven velocities only

reduce by a factor of 10 for gravity levels as low as 10 -',qo. Paley el al. observe what appears to be gravitationally

sensitive particle development and inclusion in thin films using a photodeposition process. From this study, it is clear that

production of homogeneous thin films would have to occur in the environment of a complicated flow pattern of

recirculation with a nonuniform temperature distribution. Indeed, even when irradiation occurs from the top of the cell,

the most stable stratified cell orientation, defects remain in our films due to the persistence of buoyancy-driven

convection. To achieve homogeneity, minimal scattering centers, and possible molecular order, photodeposition of

polymer films by UV light exposure must proceed in a reduced-convection environment. Fluid mechanics simulations are

useful for establishing gravitational sensitivity to this recently discovered process (patent # 5,451,433) for preparing thin

films having quite promising nonlinear optical characteristics.

I. Introduction

In recent years, there has been a great deal of

interest in the use of organic materials in the devel-

opment of high-efficiency optoeleclronic and

photonic devices. There are many possibilities

among organics which allow considerable flexibil-

*Corresponding author. Fax: + I 205 544 2102.

ity in the design of unique structures having a var-

iety of functional objectives. The use of nonlinear

optical (NLO} organic materials as thin film

waveguides allows full exploitation of their desir-

able qualities by permitting long interaction

lengths and large power densities with modest

power input I-1]. Organics have many features that

make them desirable for use in optoelectronic devi-

ces such as high second- and third-order nonlin-

earities, flexibility of molecular design, and damage

0022-0248:97/$17.00 Copyright _ 1997 Elsevier Science B.V. All righls reserved
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resistance to optical radiation. However, their use

in devices has been hindered by processing difficul-

ties for crystals and thin films.

One very promising class of organic compounds

for NLO applications are polydiacetylenes, which
are novel in that they are highly conjugated poly-

mers which can also be crystalline [2]. Polydiacety-

lenes offer several advantages over other organic

materials because (a) their highly conjugated elec-

tronic structures make them capable of possessing

large optical nonlinearities with fast response times;
(b) they can be highly ordered, and indeed crystal-

line, which is essential for optimizing their NLO

properties; and (c) their polymeric properties allow
their formation into thin films which are useful for

device fabrication. There are several methods in use

to prepare thin films, such as Langmuir Blodgett

[3-5], growth from sheared solution or melt [6 8],

Vapor deposition [9 11], and melt growth between

glass plates [12]. Epitaxial growth onto ordered

organic and inorganic substrates, and variations in
processing conditions are useful for preparing high-

ly oriented polydiacetylene films. The relationship

between processing conditions and uniformity in

thickness, degree of orientation, and NLO proper-

ties is important. In this paper, we discuss gravi-
tational influences during a novel technique for

growing thin films which involves exposing a

transparent substrate, in contact with diacetylene
monomer solution, to ultraviolet (UV) light

from the backside. A polymer film deposits on the
side of the substrate in contact with monomer in

solution.

Polydiacetylenes are generally prepared by syn-

thesizing diacetylene monomers, growing crystals
or thin films of the monomers, and then polymeriz-

ing these monomers, usually in the solid state, by

exposure to UV light or gamma rays [13]. Of

interest is the diacetylene monomer 6-(2-methyl-4-
nitroanilino)-2,4-hexadiyn-l-ol (DAMNA). In our

process, thin amorphous films of the corresponding
polydiacetylene (PDAMNA) deposit through pol-

ymerization of the diacetylene monomer in solu-

tion by exposure to UV light (Fig. 1) [14]. The

absorption of UV radiation by the solution can

result in fairly intense fluid flows which affect film

quality. The flow fields and temperature distribu-

tions during the polymerization process by expo-

DAMNA:
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Fig. 1. The diacetylene monomer, 6-[2-methyl-4-nitroanilino)-

2.4-hexadiyn-l-ol (DAMNA) photo-polymerizing to form

PDAMNA.

sure to UV light details the nature of gravitational

influences on this process.

Our approach is to investigate the transient,
three-dimensional behavior of flow fields and tem-

perature distributions through buoyancy-driven
convection under normal gravity with various ori-

entations of the growth chamber. Since the onset of

steady-state conditions occurs after 10 s, and the
duration of photodeposition is about 2 days, our

interest in this paper is to report the steady-state

flow fields and temperature distributions. Steady-

state conditions correlate most meaningfully to the

experimental data. Observations on the initial tran-

sient will appear in a future communication. The
chamber contains a solution of DAMNA in 1,2-

dichloroethane an d convection proceeds from ex-

posure to UV light. Good quality thin films elude

growth from solutions absent of uniform flow fields
and homogeneous temperature distributions near
the substrate surfaces.

2. Numerical simulation of fluid flows

We consider a cylindrical chamber with a radius

of ro and height L. Fig. 2 shows the geometrical
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(a) r- z plane (b) r -e (or x - y) plane

L

l

Quartz or Glass

ubstrate

ro

0 r

Y

x
b

Fig. 2. Geometrical illustration of cylindrical chamber for mathematical modeling (a) in an r z plane, and (b) in an r 0 plane.

configuration of the test chamber. For the purpose

of considering the mathematical formulation, we

adopt cylindrical coordinates (r, 0, z) with corre-

sponding velocity components (u, v, w), and compo-

nents of gravity acceleration (y,, go, g:). Fig. 2a and
Fig. 2b show the geometrical configuration of the

cylindrical chamber in an r-z plane and an t" 0,

plane, respectively. The chamber is made of alumi-

num and operates at room temperature taken as
25:_C. The chamber is filled with a solution of

DAMNA in 1,2-dichloroethene, and at least one

wall, through which UV radiation enters the cell, is
UV transparent (quartz) and serves as the film

substrate. Absorption of UV by the film itself is

neglected in this preliminary study. The flow pro-

files and temperature distributions in the monomer

solution are mainly governed by natural convec-

tion and driven by the absorption of UV radiation.

The governing equations are time-dependent,

three-dimensional incompressible continuity, mo-

mentum (full Navier-Stokes equations}, and energy
equations incorporating Boussinesque assump-

tions [ 15].

The heat source is absorption of UV radiation,

given by the Beer-Lambert law [16]. In this pre-

liminary analysis we are primarily interested in

steady-state conditions, which develop in 10 s. Be-

cause of this, and the presence of excess monomer,

the monomer concentration does not decrease ap-
preciably until after several hours of irradiation

[17]. We can therefore treat monomer concentra-

tion as constant for these calculations and ignore

the concentration dependence of the absorption

coefficient. The expression for the rate of heat gen-

eration per unit area at depth z is

q0{l - exp[ - _(L - Z)]},

where _ is the UV absorption coefficient (or decay

coefficient} of DAMNA in 1,2-dichloroethane

(2.5 mg/ml) _ 150 cm t, L the height of container

and qo is the intensity of UV radiation (W/cm2).

The initial condition is that the system is at room

temperature (25:'C), and the boundaries are the

inner walls which remain at 25'C throughout the

process (no penetration and no slip for flow fields).
In this study, a cylindrical container, as illus-

trated in Fig. 2, has the following specifications:
2ro = 1.5 cm and L = 1.0 cm. Because the solution

is very dilute, solution physical parameters are

primarily estimates of the solvent, 1,2-dichloro-

ethane at 25:'C: solution density p = 1.2 g/cm 3,

kinematic viscosity v = pip = 0.33 × 10-2 cm2/s,
coefficient of thermal expansion for solution

fl= 1.2x10-3K _, heat conduction coefficient

_: = 1.03× 10 -3 W/cm.K, and constant pressure

specific heat Cp = 1.0J/g K; gravity acceleration

go = 9.81 m/s 2.

A numerical algorithm [18-20] using a finite

difference approach was used to determine the

time-dependent, three-dimensional flow profiles
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and temperature distributions leading to our re-

ported steady-state conditions. Grid points of
21 × 34 × 10, respectively, along (r, 0, z) coordinates

were used in this numerical computation. The level

of UV irradiation intensity for all computations

was q_ = 1.00 W/cm z. The chamber orientation va-

ries according to ¢ = 0 (irradiation from the top),

90 (irradiation from the side), and 180" (irradiation

from the bottom) by rotating the z-axis relative to

gravitational acceleration. We observe flow profiles

in the cylinder in the orthogonal planes, 0 = 0 180

and 0 = 90-270' to investigate the characteristics
of convection-driven flows and temperature pro-

files.

Fig. 4a and Fig. 4b show steady-state temper-

ature profiles due to induced convection in the r z

plane coincident with 0 = 0 180, and in the r 0

plane at z = 0.97 cm, respectively. The curves in
Fig. 4a and Fig. 4b are the isothermal lines with the

indicated temperatures in 'C at the corresponding

locations. Figs. 3 and 4 suggest that bottom ir-

radiation of the chamber induces pronounced tem-

perature and flow profiles possibly harmful to

developing order in photodeposited films during

ground processing. In this orientation, it may' be

possible to enhance the pattern of film heteroge-

neity during unit gravity processing by maximizing
irradiation intensity.

2.2. ¢=o

The steady-state convection-induced flow field

upon bottom irradiation of the reaction chamber

(_p = 180') is illustrated in Fig. 3. We would intui-

tively expect quite intense flow in this orientation.
The convection-induced flow vector depiction in

Fig. 3a is in an r z plane. Note the two recircula-
tion zones that form about :he z-axis. Fig. 3b shows

steady-state convection-induced outflow in the vi-

cinity of the quartz substrate (at z = 0.97 cm) in the

r-O (x y) plane.

The steady-state convection-induced flow fields

upon top irradiation of the reaction chamber

(qJ = 0 ) is illustrated in Fig. 5a and Fig. 5b. The

figures show convection-induced flow vectors in an

r z plane, and in the r 0 plane at z=0.97cm,
respectively. Although the maximum flow velocity

is quite small, Fig. 5a and Fig. 5b illustrate the

possibility of an interesting process. During irradia-
tion of monomer solution through the quartz sub-

strate, there is no absorption of energy by the

T_

(a) Vm = .60 cm/s (b) Vm = 0.97 crn/s

lOO....
0 . • • _ _ t • • • . t

0.75- '''" :I

°s°lii!!!!g!i ooo
:;,,ll 2

0.20" i'] :. , , , t I t t _ : : : :." J.II.: , -0.38] _/] 1_
I _ . . , , p t t ! I ', _ ..... ; _ |l
',: ....... , , ......... ,I

o.oo ::.2222',: " ",'""::--,:::!, -0.75t , , ._ _ . , , ,
-0.75 -0.:38 0.00 0.38 0.75 -0.75 -0.38 0.00 0.38 0.75

Fig. 3. Steady-state flow profile due to UV irradiation from the bottom of the chamber (_ = 180 ) (a) in the r z plane coincident with

0=0 180 and(b) inther 0 plane at z=0.97cm.
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(a)
g

i

(0

25

Contour from 27.155 to 35.181 by .730

(b)

Contour from 27.155 to 35.181 by 0.730

Fig. 4. Steady-state temperature profile due to UV irradiation from the bottom of the chamber (¢, = 180 ) (a) in the r -z plane coincident

with0=0 180 and (bj in the r 0planeatz=0.97cm.

1.00

0.75

0.50

0.20

0.00

-0.75

(a) Vm = 0.078 cm/s

_ _o ....... ° ° ° ........

i I i I

-0.38 0.00 0.38 0.7_

(b) Vm = 0.073 cm/s

0.75 t

-0.38-[ _ / ,' ,' ,' ', ', ', ', ",,. '"/

-O.75 t _ i

-0.75 -0.38 0.00 0.38 0.75

Fig. 5. Steady-state flow profile due to UV irradiation from the top of the chamber (_, = 0:) (a) in the r-z plane coincident with

0 = 0-180 and (b) in the r-.O plane at z = 0.97 cm.

quartz since it is transparent to UV light. However,
there is absorption by the solution in contact with

the window. Therefore, for _ = 0°, because of the

cool quartz and, to some penetration depth, hotter

solution, we expect an unstable thermal gradient in

a thin fluid layer adjacent to the quartz window

[21]. There is a small radial outflow along the

horizontal direction at the top within a thin layer

near the quartz substrate in an r-O plane.

Fig. 6a and Fig. 6b show steady-state temper-

ature profiles resulting from top irradiation in the

r-z plane coincident with the plane 0 = 0-180 °
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(a)

g

25

-- 35.97 35.97 35.97 --

Contour from 25 to 85.31 by 5.483

(b)

Contour from 71.05 to 85.31 by 1.296

Fig. 6. Steady-state temperature profile due to UV irradiation from the top of the chamber (q/= 0 ) (a) in the r z plane coincident with

0=0, 180 and(b) in the r-0 plane at z=0.97cm

ml,.-

(a) Vm = 1.40 cm/s

........ k_.''',

.. ?..22 : ..............

-0.75 -0.38

(b) Vm = 0.58 cm/s

It t# t _ " , | I [ t _ ' _lll

I,, .... :11{,. ,,,,11
# • .... I I .... "

],,.,,,,[I, ,,,.:,III
W" "' '"' '"ltJ
_''-" ' _ ...... ' _ ' -'', ;11

0.00 0.38 0.75 -0.75 -0.38 0.00 0.38 0.75

(c) Vm = 1.40 cm/s

-0.75 -0.38 0.00 0.38 0.75

Fig. 7. Steady-state flow profile in an r 0 plane due to UV irradiation from the side of the chamber (_b = 90 ) at intensity 1.0 W cm-'. (a)

At 0 = 0 180, (b) at 0 = 90 270, and (c) in the r 0 plane at z = 0,97 cm.

and in the r 0 plane at z = 0.97 cm, respectively.

There is a very small variation in the tempera-
ture distribution. The medium is otherwise stably

stratified.

2.3. _9= 90 '_

In the case of convection driven by side irradia-

tion (_ = 90_), the quartz window orientation

through which the radiation passes is 90 relative to
the z-axis. An r-z cross section coincident with the

plane 0 = 0-180 illustrates typical convection in-
duced by side heating (Fig. 7a). On the other hand,

Fig. 7b illustrates the _z plane coincident with
the plane 0 = 9(_270, and shows convection in-

duced by heat flows from the top. Gravitational

acceleration is perpendicular to the flow direction

(perpendicular to the figure shown). Fig. 7c shows
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(a) 25.______._ (b) (c)

Contour from 25.192 to 27.974 by 0.199 Contour from 25.192 1o 27.974 by 0.253 Contour lrom 25.192 Io 27.974 by 0.253

Fig. 8. Steady-state temperature profiles due to UV irradiation from the side of the chamber (_9 = 90) (a)in the r z plane coincident

with 0 - 0 180, (b) in the r z plane coincident with 0 = 90,270, and (c) in the r 0 plane at z = 0.97 cm.

steady-state flows in an r-O plane in the vicinity of

the quartz substrate (at z = 0.97 cm).

Fig. 8a and Fig. 8b show the steady-state tem-

perature profiles in the r z plane coincident with

0 = 0-180', and 0 = 90 270, respectively, while

the reaction chamber is tilted 90 D with respect to
gravitational acceleration. Fig. 8c shows the

steady-state temperature profile in the vicinity of

the quartz substrate.

3. Experiments: _=0', 90, and low-gravity

The chambers constructed for carrying out

photodeposition of PDAMNA thin films from
solution onto small round substrate disks are of

approximately the same geometry as described in

the numerical model. To grow thin films onto

quartz disks (or any UV transparent substrate), the
chambers are filled with a solution of DAMNA in

1,2-dichloroethane (approximately 2.5 mg/ml =
0.01 mols/1), and irradiated through the substrate

with long wavelength (365 nm) UV light. As the

solution is irradiated, a photopolymerization reac-

tion occurs and a thin PDAMNA film deposits on
the inside surface of the substrate as described in

the earlier sections. Besides the heat transfer

process as modeled, we also suspected that there
could be a soLutal contribution to the fluid

flow. That is, some solutal convection could occur

due to depletion of monomer in the vicinity of the
growing film which can give rise to variations in

monomer concentration and subsequently induced
density gradients. However, at the low monomer

concentrations we are considering, there is very

little change in solution density with monomer con-

centration, and therefore, we expect solutal convec-

tion to be minimal. Also, as stated previously,

monomer concentration varies little during early
stages of photodeposition. In order to begin to sort

out dominating factors driving convection and flow

patterns, we deposited PDAMNA films while tilt-

ing the chamber z-axis (Fig. 2) and irradiating

the solution at 0 and 90 _ relative to gravitational
acceleration.

The most obvious indication of convection, ex-

perimentally, has been the observation of particles
of solid polymer embedded in the films when

viewed under an optical microscope. These par-

ticles form when polymer chains in the bulk solu-
tion collide due to convection and coalesce into

small solid particles on the order of a few hun-
dredths to tenths of a micron in size. Because these

particles are so small, almost colloidal in nature,

they do not sediment out readily, and thus remain
suspended in the bulk solution. Convection then

transports these particles to the surface of the grow-

ing film where they become incorporated. In the
case where the chamber is vertical and the solution

is irradiated from the top (_p = 0c'), the mathemat-
ical model reflects that convection is at a minimum.

This is also the case experimentally (Fig. 9b). Even

though convection is minimal, there are still some

solid particles embedded in the film following
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Fig. 9. PDAMNA particles embedded dt,e to convectively induced polymer cfitdn collisions and transport to film surface. The

corresponding illustrations are: (a) side irradiation (t) = 90 ) where there is significant convection ( 1000 × ) and (b) top irradiation

(_, = 0 ) where convection is considerably Jess (1000 x ).

irradiation from the top of the chamber. This may
occur because the model predicts a thin unstable

layer having an outward flow profile with flow
vector magnitudes increasing with beam intensity.

Additionally, the radial temperature gradient can

give rise to convection. In the case where the cham-

ber is perpendicular to gravitational acceleration,
and the solution is irradiated from the side

(qJ = 90), the mathematical model predicts signifi-
cant flows consistent with side heating of the

sample. This result is also consistent with the ex-

periment (Fig. 9a). There is a far greater concentra-

tion of particles in films grown in this horizontal
orientation than in the case of top irradiation.

Last, we recently conducted an experiment

aboard the space shuttle Endeavor (CONCAP-IV)

in which photodeposition of PDAMNA films from

solution was carried out in microgravity. In this

environment buoyancy-driven convection can es-

sentially be eliminated. Because of unplanned or-

biter maneuvers during the mission and limitations

of the flight hardware, results varied somewhat
from one sample to another. However, as seen from

Fig. 10, the best space-grown film clearly exhibits
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Fig. 10. PDAMNA films grown by photopolymerization on the

shuttle Endeavor (STS-69; CONCAP-IV).

fewer particles (virtually none) than the best

ground-based films. These few particles may have

resulted from slight mixing in the solution caused

by the orbiter motion or, possibly, they may have
nucleated on the surface of the film itself. Nonethe-

less, the preliminary results are very encouraging; it

appears that the lack of convection can indeed lead

to PDAMNA films with significantly fewer defects,
and thus greater optical quality. We are currently

planning more sophisticated space experiments

that should ensure greater reproducibility from one

sample to another, as well as allow direct observa-

tion of fluid flows and film growth during photo-

deposition. Measurements of film homogeneity,

surface roughness, NLO properties, etc., will be the

subject of future experiments.

4. Discussion and conclusion

The calculations accurately predict the gross

quality of polymer films produced by the novel

process of photodeposition. The evidence is strong

that heat absorbed by the solution induces buoy-

ancy-driven convection which clearly affects film

quality. Even during photopolymerization in the
most stable reaction chamber configuration, i.e. top

irradiation, it is impossible to avoid particle incor-

poration in the film as demonstrated by the model

and the experiment. However, photo-deposition

conducted in the reduced-buoyancy environment

of space shows promise for eliminating these de-

fects. The particles act as scattering centers which

are a direct impediment to high quality waveguid-

ing and photonic applications. However, it is clear

that control of driving forces for convection in
addition to rational approaches to molecular en-

gineering could improve order and quality in

photodeposited films.

More precise estimates of the pattern of film

homogeneity as a function of reaction chamber

orientation will proceed by mapping the surfaces of
photodeposited films using ellipsometry, optical

microscopy, and techniques for determining mo-
lecular orientation in the film. As resolution in

topography progresses, more specific correlation

with predicted patterns on the basis of flow profiles

and temperature distributions will be likely.
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